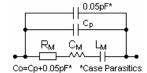


SAW RESONATOR Part Number:VTR43304

The **VTR43304** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) RF resonator in a surface-mount ceramic **QCC8B** case with center frequency **433.92**MHz.

1. Package Dimension (QCC8B)



Pin		Configuration			
2		Input / Output			
6		Output / Input			
1, 3, 5, 7		To be grounded			
4, 8		Case Ground			
Sign	Data (unit:	mm)	Sign	Data (unit: mm)	
A	1.00		D	1.50	
В	1.27		E	3.80	
С	0.60		F	3.80	

2. Marking

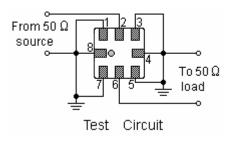
VTR 43304 Laser Marking

3. Matching Circuit

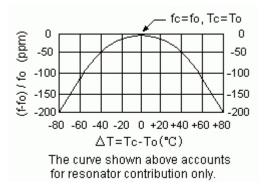
Maximum Ratings

Rating		Value	Unit
Input Power Level	Р	0	dBm
DC Voltage	V _{DC}	+30	V
Storage Temperature Range	T_{stg}	-40 to +85	°C
Operable Temperature Range	T _A	-40 to +85	°C

Electrical Characteristics

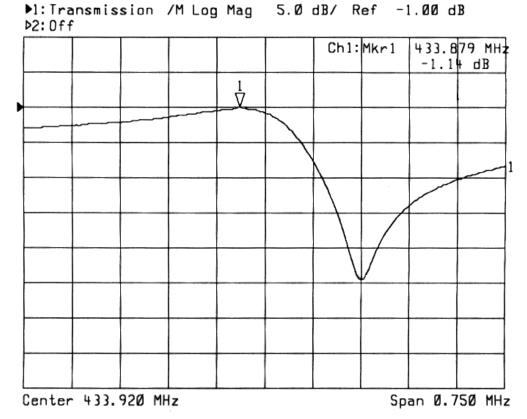

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	fc	433.845		433.995	MHz
(+25°C)	Tolerance from 433.920 MHz	Δfc		±75		kHz
Insertion Loss		IL.		1.5	2.2	dB
Quality Faster	Unloaded Q	Qu		8,800		
Quality Factor	50 Ω Loaded Q	QL		1,400		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	F ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃²
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
	Motional Resistance	R _M		19	29	Ω
RF Equivalent RLC Model	Motional Inductance	L _M		61.1372		μH
	Motional Capacitance	См		2.2027		fF
	Shunt Static Capacitance	C ₀	1.9	2.2	2.5	pF

RoHS Compliant

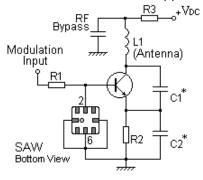

I Electrostatic Sensitive Device

- 1. Unless noted otherwise, case temperature $T_c = +25^{\circ}C\pm 2^{\circ}C$.
- 2. The center frequency, f_c, is measured at the minimum insertion loss point with the resonator in the 50Ω test system.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_o, is the temperature of maximum (or turnover) frequency, f_o. The nominal frequency at any case temperature, T_c, may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the static capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance.

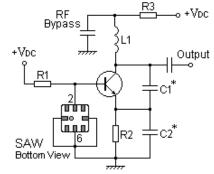
Test Circuit



Temperature Characteristics



Typical Frequency Response



Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application

www.vtorch.ca

Stability Characteristics

	Test item	Condition of test		
1	Mechanical shock	(a) Drops: 3 times on concrete floor (b) Height: 1.0 m		
2	Vibration resistance	(a) Frequency of vibration: 10~55Hz (c) Directions: X,Y and Z	(b) Amplitude: 1.5 mm (d) Duration: 2 hours	
3	Moisture resistance	(a) Condition: 40°C, 90~95% R.H. (c) Wait 4 hours before measurement	(b) Duration: 96 hours	
4	Climatic sequence		55°C for 24 hours, 90~95% R.H. 10°C for 24 hours, 90~95% R.H.	
5	High temperature exposure	(a) Temperature: 70°C (c) Wait 4 hours before measurement	(b) Duration: 250 hours	
6	Thermal impact	(a) +70°C for 30 minutes ⇒ -25°C for 30 minutes repeated 3 times (b) Wait 4 hours before measurement		

Requirements: The SAW resonator shall remain within the electrical specifications after tests.

Remarks

- SAW devices should not be used in any type of fluid such as water, oil, organic solvent, etc.
- Be certain not to apply voltage exceeding the rated voltage of components.
- Do not operate outside the recommended operating temperature range of components.
- Sudden change of temperature shall be avoided, deterioration of the characteristics can occur.
- Be careful of soldering temperature and duration of components when soldering.
- Do not place soldering iron on the body of components.
- Be careful not to subject the terminals or leads of components to excessive force.
- SAW devices are electrostatic sensitive. Please avoid static voltage during operation and storage.
- Ultrasonic cleaning shall be avoided. Ultrasonic vibration may cause destruction of components.

V.TORCH 2009. All Rights Reserved.

- 1. The specifications of this device are subject to change or obsolescence without notice.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 4. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca

