

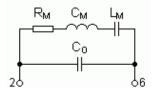
SAW RESONATOR

Part Number: VTR43302

The **VTR43302** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) RF resonator in a surface-mount ceramic **DCC6** case with center frequency **433.92** MHz.

1. Package Dimension (DCC6)

Pin Configuration


1	Terminal		
2	Terminal		
1.3.4.6	Ground		

2. Marking

VTR 43302

Laser Marking

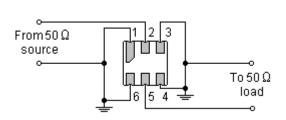
3. Matching Circuit

4.Performance

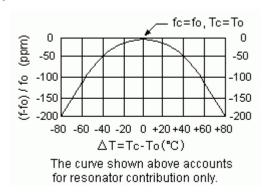
4.1Maximum Ratings

Rating		Value	Unit
Input Power Level	P	0	dBm
DC Voltage	$V_{ extsf{DC}}$	+30	V
Storage Temperature Range	\mathcal{T}_{stg}	-40 to +85	$^{\circ}$
Operable Temperature Range	TA	-40 to +85	$^{\circ}$

4.2 Electrical Characteristics

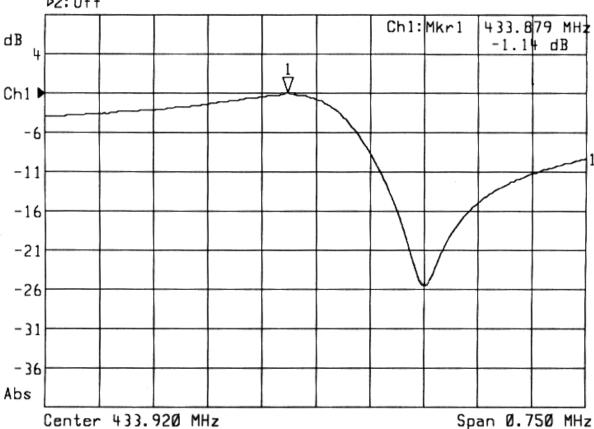

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	433.845		433.995	MHz
	Tolerance from 433.920 MHz	Δfc		±75		kHz
Insertion Loss		lι		1.5	2.2	dB
Ovality Factor	Unloaded Q	Q _U		8,800		
Quality Factor	50 Ω Loaded Q	QL		1,400		
	Turnover Temperature	T ₀	25		45	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃²
Frequency Aging Absolute Value during the First Year		fA		≤10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			MΩ
	Motional Resistance	R _M		19	29	Ω
RF Equivalent	Motional Inductance	L _M		61.1372		μН
RLC Model	Motional Capacitance	См		2.2027		fF
	Shunt Static Capacitance	C ₀	1.9	2.2	2.5	pF

NoHS Compliant

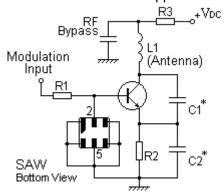

(i) Electrostatic Sensitive Device

- 1. Unless noted otherwise, case temperature T_C = +25°C±2°C.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point with the resonator in the 50 Ω test system.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_0 , may be calculated from: $f = f_0 [1 FTC (T_0 T_0)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the static capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance.

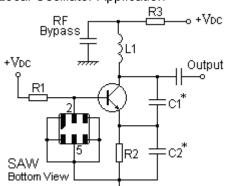
Test Circuit



Temperature Characteristics


5. Typical Frequency Response

▶1:Transmission /M Log Mag 5.0 dB/ Ref -1.00 dB ▶2: Off

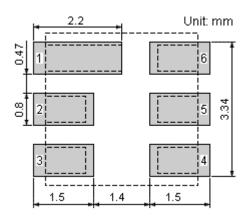


Typical Application Circuits

1) Low-Power Transmitter Application

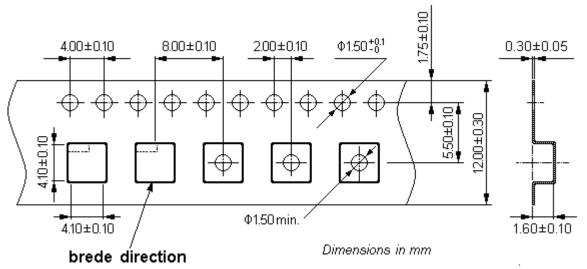
2) Local Oscillator Application

Stability Characteristics

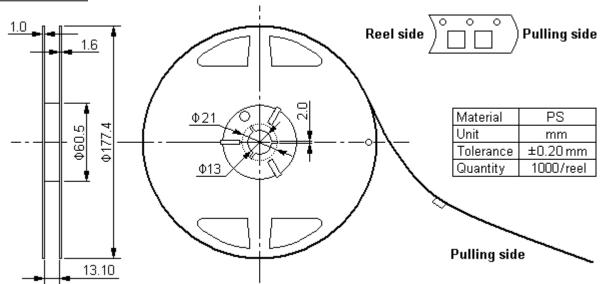

	Test item	Condition of test		
1	Mechanical shock	(a) Drops: 3 times on concrete floor (b) Height: 1.0 m		
2	Vibration resistance	(a) Frequency of vibration: 10~55Hz (b) Amplitude: 1.5 r (c) Directions: X,Y and Z (d) Duration: 2 hou		
3	Moisture resistance	(a) Condition: 40°C, 90~95% R.H. (c) Wait 4 hours before measurement	(b) Duration: 96 hours	
4	Climatic sequence		°C for 24 hours, 90~95% R.H. °C for 24 hours, 90~95% R.H.	
5	High temperature exposure	(a) Temperature: 70°C (c) Wait 4 hours before measurement	(b) Duration: 250 hours	
6	Thermal impact	(a) +70°C for 30 minutes ⇒ -25°C for 30 minutes repeated 3 times (b) Wait 4 hours before measurement		

Requirements: The SAW resonator shall remain within the electrical specifications after tests.

Remarks

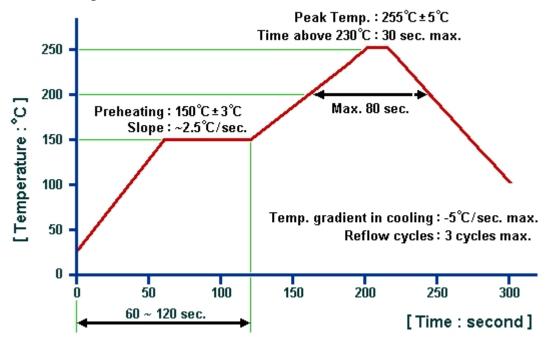

- SAW devices should not be used in any type of fluid such as water, oil, organic solvent, etc.
- Be certain not to apply voltage exceeding the rated voltage of components.
- Do not operate outside the recommended operating temperature range of components.
- Sudden change of temperature shall be avoided, deterioration of the characteristics can occur.
- Be careful of soldering temperature and duration of components when soldering.
- Do not place soldering iron on the body of components.
- Be careful not to subject the terminals or leads of components to excessive force.
- SAW devices are electrostatic sensitive. Please avoid static voltage during operation and storage.
- Ultrasonic cleaning shall be avoided. Ultrasonic vibration may cause destruction of components.

Recommended Land Pattern



Packing Information

Carrier Tape


Reel Dimensions

Outer Packing

Туре	Quantity	Dimension	Description	Weig ht	
Carton Box I	5000	190×190×95	anti-static plastic bag & carton box 1 reel / bag	0.85	
Carton Box II	10000	190×190×190	5 bags / box (5000 pcs) 10 bags / box (10000 pcs)	1.80	
		Unit: mm		Unit: kg	

Recommended Soldering Profile

V.TORCH 2009. All Rights Reserved.

- 1. The specifications of this device are subject to change or obsolescence without notice.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 4. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@vtorch.ca