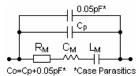



# **SAW RESONATOR**

Part Number: VTR30604

The **VTR30604** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) RF resonator in a surface-mount ceramic **QCC4A** case with center frequency **306** MHz.

## 1.Package Dimensions(QCC4A)




| Pin  |                 | Configuration  |                |                 |  |
|------|-----------------|----------------|----------------|-----------------|--|
| 1    |                 | Input / Output |                |                 |  |
|      | 3               |                | Output / Input |                 |  |
| 2/4  |                 | Case Ground    |                |                 |  |
| Sign | Data (unit: mm) |                | Sign           | Data (unit: mm) |  |
| Α    | 1.2             |                | D              | 1.4             |  |
| В    | 0.8             |                | Е              | 5.0             |  |
| С    | 0.5             |                | F              | 3.5             |  |

## 2. Marking

# VTR 30604 Laser Marking

## 3. Matching Circuit

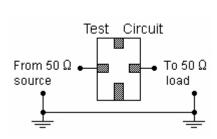


## 3.Maximum Ratings

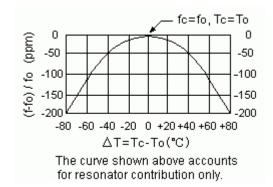
| Rating                     |                     | Value      | Unit |
|----------------------------|---------------------|------------|------|
| Input Power Level          | P                   | 0          | dBm  |
| DC Voltage                 | V <sub>DC</sub>     | 0          | V    |
| Storage Temperature Range  | $\mathcal{T}_{stg}$ | -40 to +85 | °C   |
| Operable Temperature Range | TA                  | -40 to +85 | °C   |

#### **4. Electrical Characteristics**

|                  | Characteristic             | Sym            | Minimum | Typical | Maximum | Unit |
|------------------|----------------------------|----------------|---------|---------|---------|------|
| Center Frequency | Absolute Frequency         | f <sub>C</sub> | 305.925 |         | 306.075 | MHz  |
| (+25℃)           | Tolerance from 306.000 MHz | $\Delta f_{C}$ |         | ±75     |         | kHz  |
| Insertion Loss   |                            | IL             |         | 1.0     | 1.6     | dB   |
| Ovality Factor   | Unloaded Q                 | Qυ             |         | 14000   |         |      |
| Quality Factor   | 50 Ω Loaded Q              | $Q_L$          |         | 1500    |         |      |


# **V.TORCH**

|                                                    | Turnover Temperature                 | T <sub>0</sub> | 25   |         | 55   | $^{\circ}$ |
|----------------------------------------------------|--------------------------------------|----------------|------|---------|------|------------|
| Temperature<br>Stability                           | Turnover Frequency                   | f <sub>0</sub> |      | fc      |      | kHz        |
| ·                                                  | Frequency Temperature Coefficient    | FTC            |      | 0.032   |      | ppm/℃²     |
| Frequency Aging                                    | Absolute Value during the First Year | fA             |      | ≤10     |      | ppm/yr     |
| DC Insulation Resistance Between Any Two Terminals |                                      |                | 1.0  |         |      | ΜΩ         |
|                                                    | Motional Resistance                  | R <sub>M</sub> |      | 12      | 20   | Ω          |
| RF Equivalent                                      | Motional Inductance                  | L <sub>M</sub> |      | 87.4235 |      | μН         |
| RLC Model                                          | Motional Capacitance                 | См             |      | 3.0975  |      | fF         |
|                                                    | Shunt Static Capacitance             | C <sub>0</sub> | 2.85 | 3.10    | 3.35 | pF         |


® RoHS Compliant

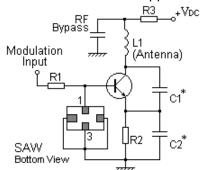
- Electrostatic Sensitive Device
- 1. Unless noted otherwise, case temperature T<sub>C</sub> = +25°C±2°C.
- 2. The center frequency,  $f_C$ , is measured at the minimum insertion loss point with the resonator in the 50 $\Omega$  test system.
- Frequency aging is the change in f<sub>C</sub> with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature,  $T_0$ , is the temperature of maximum (or turnover) frequency,  $f_0$ . The nominal frequency at any case temperature,  $T_0$ , may be calculated from:  $f = f_0 [1 FTC (T_0 T_0)^2]$ .
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C<sub>0</sub> is the static capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance.

#### **Test Circuit**

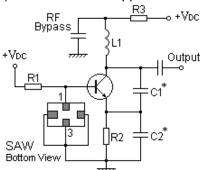


#### **Temperature Characteristics**




# **V.TORCH**

## **Typical Frequency Response**




## **Typical Application Circuits**

## 1) Low-Power Transmitter Application



# 2) Local Oscillator Application





#### **Stability Characteristics**

| Test item |                           | Condition of test                                                                                       |                                                              |  |  |  |
|-----------|---------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
| 1         | Mechanical shock          | (a) Drops: 3 times on concrete floor<br>(b) Height: 1.0 m                                               |                                                              |  |  |  |
| 2         | Vibration resistance      | (a) Frequency of vibration: 10~55Hz<br>(c) Directions: X,Y and Z                                        | (b) Amplitude: 1.5 mm<br>(d) Duration: 2 hours               |  |  |  |
| 3         | Moisture resistance       | (a) Condition: 40°C, 90~95% R.H. (b) Duration: 96 l<br>(c) Wait 4 hours before measurement              |                                                              |  |  |  |
| 4         | Climatic sequence         |                                                                                                         | °C for 24 hours, 90~95% R.H.<br>°C for 24 hours, 90~95% R.H. |  |  |  |
| 5         | High temperature exposure | (a) Temperature: 70°C<br>(c) Wait 4 hours before measurement                                            | (b) Duration: 250 hours                                      |  |  |  |
| 6         | Thermal impact            | (a) +70°C for 30 minutes ⇒ -25°C for 30 minutes repeated 3 times<br>(b) Wait 4 hours before measurement |                                                              |  |  |  |

Requirements: The SAW resonator shall remain within the electrical specifications after tests.

#### Remarks

- SAW devices should not be used in any type of fluid such as water, oil, organic solvent, etc.
- Be certain not to apply voltage exceeding the rated voltage of components.
- Do not operate outside the recommended operating temperature range of components.
- Sudden change of temperature shall be avoided, deterioration of the characteristics can occur.
- Be careful of soldering temperature and duration of components when soldering.
- Do not place soldering iron on the body of components.
- Be careful not to subject the terminals or leads of components to excessive force.
- SAW devices are electrostatic sensitive. Please avoid static voltage during operation and storage.
- Ultrasonic cleaning shall be avoided. Ultrasonic vibration may cause destruction of components.

#### V.TORCH 2009. All Rights Reserved.

- 1. The specifications of this device are subject to change or obsolescence without notice.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 4. For questions on technology, prices and delivery, please contact our sales offices or e-mail <a href="mailto:info@vtorch.ca">info@vtorch.ca</a>